Science Overview

Expedition 32 and Expedition 33/34 continue to expand the scope of research aboard the International Space Station, with new research facilities being delivered and a new micro-satellite deployment system being tested. The station has returned to a predominantly six-person crew, allowing more crew time available for science activities.

During this timeframe, more than 240 experiments will be performed on the station, involving more than 80 new experiments, technology demonstrations and facilities. More than 400 investigators from around the world are involved in the various types of research. The investigations cover human research, biological and physical sciences, technology development, Earth observation, and education.

Several new Japan Aerospace Exploration Agency (JAXA) investigations are joining the suite of research. JAXA’s Japanese Experiment Module (JEM) Small Satellite Orbital Deployer (J-SSOD) will demonstrate a new capability to launch small satellites from the JEM Remote Manipulator System – also known as the Kibo Laboratory robotic arm. This technology development demonstration is intended to prove air, water, and surface monitoring capabilities.

The Aquatic Habitat (AQH) is planned for delivery on JAXA’s H-II Transfer Vehicle-3 (HTV-3) also known as Konotouri 3, scheduled to launch July 21 and the third HTV to visit the station. This freshwater habitat is a new facility for the space station, which will enable investigations using fish, to learn more about bone and muscle atrophy (medical issues for the aging population) and radiation effects. The first planned residents of the habitat are Medaka fish, which are transparent – allowing for easy observation of their skeletal systems. The fish will be delivered to the station on a later flight. This facility will be housed in the Kibo laboratory.

Testing the performance of a miniaturized flow cytometer, Microflow1, is a new investigation provided by the Canadian Space Agency (CSA). Flow cytometers use a laser to analyze individual cells for cell counting and sorting, biomarker (disease signatures) detecting, and protein engineering. This technique is used routinely in diagnosing health issues, and is useful in basic research and many clinical applications. An operational medical tool of this kind on the station would allow for many types of testing and analysis, including blood cell counts (complete blood count or CBCs) to be done in-orbit. This type of blood testing is quite common on Earth and is often one of the first activities performed by physicians to determine illness specifics. A flow cytometer would make this standard test available aboard the station.

Another first time investigation is NASA’s Advanced Colloids Experiement-1 (ACE-1), using a light microscope to help provide a better understanding of crystallization and phase separation of small colloidal particles, and production quality control. Results from this research could considerably impact the shelf-life of many products used on Earth and for long-duration spaceflight missions.

As with prior expeditions, many investigations are designed to gather information about the effects of long-duration spaceflight on the human body, which will help us understand complicated processes such as immune systems with plans for future exploration missions.

The European Space Agency’s human research involving Circadian Rhythms examines the role of synchronized circadian rhythms (the human body’s 24-hour light-dark cycle) and possible maintenance during long-duration spaceflight and addresses the impacts to crew members’ health and wellbeing. Understanding how light/dark cycles and sleep pattern changes affect circadian rhythms enhances adaptation, performance and healthcare of future crew members. Results from this research could also be a benefit for shift workers on Earth.

The International Space Station Test Bed for Analog Research I-STAR Earth Departure Communications Delay Study (COMM Delay) will assist engineers and scientists in human research regarding communication delays likely to be experienced during a mission to Mars, an asteroid, or other possible destinations. Researchers want to understand any significant impacts in crew behavior and performance, including where in the communications delay is the critical point possibly affecting behavioral and task performance. The first full voice communications delay test is planned during Expedition 35, which starts in March 2013.

As part of U.S. National Laboratory activities on the station, NanoRacks modules provide autonomous, self-contained experiments that can be flown quickly and inexpensively by students, companies and other U.S. government agencies. NanoRacks facilities are being expanded, with the addition of a small centrifuge and a plate reader to be used for plant and animal tissue investigations, and allowing for onsite microbiological analysis, expanding life science and biological research on the station.

The NanoRacks plate reader is a laboratory instrument designed to detect biological, chemical or physical events of samples in microtiter plates (a flat plate with lots of “wells” used as small test tubes). Microplate readers are widely used in research, drug discovery, bioassay validation (determination of purity concentration or biological activity), quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations.

Another U.S. Laboratory offering, the National Laboratory Pathfinder – Vaccine – Salmonella (NLP-Vaccine-Salmonella) investigation continues. Investigators are researching a vaccination for salmonella for the prevention of infection on Earth and in microgravity. Worldwide, salmonella is the most common cause of food poisoning and a major cause of death in children.

Earth science also is on the list of topics that generates much interest, and there are many investigations involving this aspect. ISS SERVIR Environmental Research and Visualization System (ISERV) is an investigation designed to gain experience and expertise in automated data acquisition. ISERV will serve as a pathfinder investigation that will lead to the development of enhanced capabilities that will provide useful images to support disaster (or other significant event) monitoring and assessment, and environmental decision making when needed. ISERV is a joint venture between NASA and the U.S. Agency for International Development (USAID) and will be installed in the Window Observational Research Facility (WORF).

The European Space Agency’s Facility for Absorption and Surface Tension (FASTER) will be flown for the first time on the space station. This investigation will research how surfactants will affect the physical chemistry properties and emulsion stability of droplet interfaces. The goal is to generate a model of emulsion dynamics that can then be used in industrial applications where mixtures of two or more liquids that are typically unable to be blended (for instance oil and water) are desired.

In typical NASA and international partner fashion, there are many educational activities and investigations planned to teach and inspire students of all ages. The YouTube Space Lab Global Science contest winners were chosen and announced, with the two winning experiments being flown and performed on the space station before the end of the year. Earth Knowledge Acquired by Middle School Students (EarthKAM) continues to excite and engage middle-school students.

Alpha Magnetic Spectrometer-02 (AMS) and Robonaut-2 investigations are ongoing. The AMS continues to collect a vast amount of data – measuring almost double the amount researchers expected, at a rate of about 1.2 billion particles per month. The testing of Robonaut’s capabilities and movement continues as planned.

In May, SpaceX successfully launched and returned their Dragon vehicle, proving its capability to return science samples and equipment. SpaceX Dragon will significantly expand return capabilities available elsewhere only on Russian Soyuz vehicles whose primary purpose is safe crew launch and return. The short-duration SpaceX demonstration mission returned several Material Science Research Rack (MSRR) sample cartridge assemblies used in metal alloy materials processing. The cartridge assemblies will be analyzed to understand the alloy solidification that occurred in microgravity during the Solidification along a Eutectic path in Ternary Alloys-2 (SETA) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions/Columnar-to-Equiaxed Transition in Solidification Processing (MICAST/CETSOL) investigations. Used science hardware also was returned for either refurbishment or disposal.

Managing the international laboratory’s scientific assets, as well as the time and space required to accommodate experiments and programs from a host of private, commercial, industry and government agencies nationwide, makes the job of coordinating space station research critical. Teams of controllers and scientists on the ground continuously plan, monitor, and remotely operate experiments from control centers around the globe. Controllers staff payload operations centers around the world, effectively providing for researchers and the station crew around the clock, seven days a week. State-of-the-art computers and communications equipment deliver up-to-the-minute reports about experiment facilities and investigations between science outposts across the United States and around the world. The payload operations team also synchronizes the payload timelines among international partners, ensuring the best use of valuable resources and crew time.

The control centers of NASA and its partners are
• NASA Payload Operations Center (POC), Marshall Space Flight Center in
Huntsville, Ala.
• RSA Center for Control of Spaceflights (“TsUP” in Russian) in Korolev, Russia
• JAXA Space Station Integration and Promotion Center (SSIPC) in Tskuba, Japan
• ESA Columbus Control Center (Col-CC) in Oberpfaffenhofen, Germany
• CSA Payloads Operations Telesciences Center, St. Hubert, Quebec, Canada

NASA’s POC serves as a hub for coordinating much of the work related to delivery of research facilities and experiments to the space station as they are rotated in and out periodically when vehicles make deliveries and return completed experiments and samples to Earth.

The payload operations director leads the POC’s main flight control team, known as the “cadre,” and approves all science plans in coordination with Mission Control at NASA’s Johnson Space Center in Houston, the international partner control centers and the station crew.

On the Internet
For fact sheets, imagery and more on Expedition 32 and Expedition 33/34 experiments and payload operations, visit the following Web site:

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s